ИНСТИТУТ АВТОМАТИКИ И ЭЛЕКТРОМЕТРИИ СО РАН

ПРЕЦИЗИОННЫЙ ЛАЗЕРНЫЙ КОМПЛЕКС ПЯТИКООРДИНАТНОЙ МИКРООБРАБОТКИ МАТЕРИАЛОВ НА ОСНОВЕ МОЩНОГО ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ДИОДНОЙ НАКАЧКОЙ

Универсальный лазерный комплекс предназначен для исследования новых технологий 5-мерной микро- и нанообработки; создания экспериментальных прецизионных элементов новой техники, в том числе микромеханики, методом лазерной прецизионной обработки с помощью наносекундных импульсов ИК и видимого диапазона мощного лазера; микро- и наномодификации поверхности; изготовления нанопорошков.

Основные технические характеристики:

Способ сканирования лазерного луча	векторный, растровый
Скорость обработки, мм/с	1–200
Максимальный размер плоскости обработки	1, MM 200×280
Разрешение по XY, нм	50
Воспроизводимость ХУ, мкм	0.1
Точность ХҮ, мкм	2
Разрешение по Z, мкм	5
Разрешение по фху	3'
Разрешение по ф _{xz}	3'
Обрабатываемые материал	металлы, пластмассы обладающие высоким

Размеры лазерного комплекса, мм

металлы, пластмассы обладающие высоким поглощением на длинах волн 1.06, 0.53 мкм $2000 \times 1000 \times 1600$

Лазерный комплекс 5-координатной микрообработки

Особенностью комплекса является возможность обработки материалов и изделий при взаимном одновременном движении лазерного луча и обрабатываемого материала по XYZкоординатам при вращении обрабатываемой детали по двум осям, причем перемещение по XY задается с точностью до 100 нм, а излучение фокусируется в пятно размером менее 7 мкм.

Применение системы управления положением лазерного луча на основе подхода составного сканирования и реализация алгоритмов управления с помощью специализированного контроллера на базе быстродействующего DSP-процессора в реальных системах записи позволяет создать комплекс с уникальными характеристиками по быстродействию и точности.

Патенты могут быть выданы, но заявки пока не подавались.

Области применения: научные исследования, производство изделий микротехники, наноматералов, разработка специальных технологий лазерной размерной микро- и нанообработки новых материалов.

Коммерческие предложения: договор на изготовление и поставку продукции.

Инновационный отдел ИАиЭ СО РАН

Тел. +7(383) 3333 661; e-mail: <u>innovation@iae.nsk.su</u>